Archive
Potable Dive Crew Video
Our potable water dive crew is the best way to keep water storage tanks and towers clean.
Sediment that builds up on the floor of storage facilities can be a safe habitat for bacteria protozoa and even viruses. Our dive team can keep the tanks clean with minimal water loss and no disruption in service! Check out this short video:
https://www.facebook.com/reel/860741941701811/?s=single_unit
Fun in the Sun
As the year summer comes to a close, many people got to take advantage of the beaches, lakes, and rivers to cool down. Travel during the summer seems to have been high, higher than last year at least. Some people opted to stay home and enjoy water attractions, and public pools near or in their own communities. Most of us wouldn’t ever think about getting sick from a trip of relaxation, and just soaking up some sun. But according to the CDC they reported almost 500 recreational water outbreak illnesses. These reports were gathered from 2010 to 2014, and the three most common illnesses reported were Acute Gastrointestinal illnesses (diarrhea or vomiting), Skin illnesses (rashes), and Acute Respiratory illnesses (cough or congestion).
While public pools, water attractions, and water playgrounds do undergo routine inspections, a CDC study found more than 10 percent of the inspections resulted in immediate closures because of severe violations. These inspections also included hotel and motel pools, spas, and hot tubs. Despite the fact most pools and water attractions give off a chlorine scent, many can be over chlorinated. Over chlorination can lead to something minor like red, irritated eyes to something as severe as Chlorine Poisoning. Although many of us associate chlorine in water to be safe, even at the correct levels it could not be as effective as one may think. Used at the recommended levels chlorine does in fact eliminate most germs in the water in minutes. But there are some germs like Cryptosporidium (a germ that causes diarrhea) that can live in accurately treated water for days, infecting many people and even causing outbreaks.
Recreational pools and waterpark attractions aren’t the only place that can harbor these bacteria and viruses. The water we use from the tap can potentially contain the bacteria and viruses. The water is usually distributed from water tanks and towers. These water storage tanks and towers do require an annual inspection to be done and are usually enforced by the state’s water associations. These annual inspections are important for a water utility to complete because it will provide valuable information on the condition of the water tank and the levels of sediment in the tank.
In Texas the inspections are enforced by the TCEQ, Texas Commission on Environmental Quality. While inspections are done yearly, cleanings are done as needed.
Some tanks are on a cleaning schedule while others are seldom and even some never cleaned at all. In many of those there is a breeding ground for bacteria and viruses inside these water tanks and towers. The breeding ground is in a layer of sediment that accumulates at the bottom of these tanks and towers.
Some water utility managers and supervisors may not know that a thin layer of sediment is enough for the bacteria and viruses to get a foothold in the water storage tank and towers. Sediment that accumulates in almost all water storage systems can be a safe habitat that can harbor a wide range of contaminants. Sediment that is allowed to build up on the floor of water storage tanks provides shelter from chlorine and other treatment chemicals allowing the intruders to grow and be a potential problem.
And even though water utility managers and supervisors do their part to ensure clean drinking water, most may not be aware that cleaning the sediment at the bottom of the tank could be a great help to them in getting better water quality results. But who wants to take a tank out of service? What if you do not need to shut your system down just to clean the sediment out? Removing the sediment while the tank remains in service is possible with the help of fully certified divers to remove the sediment at the bottom of the tank or tower. There are only a few specialty companies like ours that only dive in potable water.

Ron Perrin Water Technologies is a company that offers water storage tank and tower inspections, and cleanings. Ron Perrin Water Technologies even offers a new service that allows you to clean standpipes, which could be very difficult to do with a diver and would usually be drained to have a cleaning done because of the height of these tanks. Ron Perrin Water Technologies combated adding this new service in which they drop a cleaning robot into the standpipe to get help clear the layers of sediment. With these services that Ron Perrin Water Technologies offers there is little to no disruption of service to the water utilities. If you would like a free inspection or cleaning quote, you can contact them at 817-377-4899.
Visit us at ronperrin.com for more information about us and our services!
Like our company Facebook page https://www.facebook.com/ronperrinwatertech
2021 Regional Schools
We will be at more TWUA Regional Schools this year as they get back into the swing of things. I had the pleasure of taking Caroline Perrin my wife of 37 years to the school in San Angelo on July 20th, 2021. Since 1997 our message has remained the same; Annual Water Tank Inspections are not only important, In Texas, they are required by the TCEQ. We have the best method to inspect your tanks with NO DISRUPTION IN SERVCE and NO WATER LOSS. Our underwater video camera and lighting system lets you know what is going on inside your tank. We also document all TCEQ inspection points, that include sediment levels, paint condition, man-ways, vent screen, ladders and level indicators.
If the facility needs to be cleaned; our potable water dive crew can make quick work out of removing all sediment from the floor of the tank. If you know your tanks need to be cleaned an Inspection and Cleaning proposal can save money by getting it done all on one trip. All tanks should be on some kind of cleaning schedule. Sediment on the interior floor of a water tank can be a safe habitat for bacteria and other contaminants to get a foothold in your water system and grow. For a free quote give us a call at 817-377-4899 or e-mail perrinsales@gmail,com.


For more information visit www.ronperrin.com or call us toll free at 1-888-481-1768
“There’s WHAT in my WATER?!”
Water tanks are an essential part to a community. It is an absolute essential that cannot afford to be neglected. Water systems are in charge of maintaining the water tank structure and also maintaining the safety of the water for the community. Though most water tanks can be around for many decades, in order to increase the life of the water storage tank yearly inspections must be done in order to prevent any small problems turning into major issues.
After severe storms with high winds, including tropical storms and hurricanes a water tank should be inspected to ensure there is no damage to the structure of the tank. Some of the damage that can occur is vent structures being blown off, leaving an open entry points for insects, birds, and bats. These types of breaches can lead to bacteria, protozoa, and virus from contaminating the water.
In Texas the summer comes with the heat and droughts, leading most animals in search of water. The water stored in water storage tanks can be appealing for insects, birds, and rodents. Though an open vent structure or hole in the vent can make entry easy, exiting the tank can be difficult for them. In some water tank inspections Ron Perrin Water Technologies have completed there have been bones of birds and bats found at the bottom of the tanks. In some tanks there were even crawdads, and frogs swimming around!
In July 2015 a city in Texas turned on their tap water only to find worms coming out! Small red worms filled up their drinking glasses, and bathtubs. Click the link to read more http://wp.me/P56sW-GSO . This is one story of how insects gained access to a community’s drinking water. The rule of thumb is if the hole of a vent is enough to fit a finger digit insects can get in. If you can put your fist in it, birds and bats can gain access into the water tank. All these issues that could potentially come along is having your water tank inspected after severe storms. A water system can do these inspections or hire someone to inspect their tanks for them.
If you would like a free quote for your tanks email or call us at 888-481-1768.
Visit us at ronperrin.com for more information about us and our services!
Like our company Facebook page at https://www.facebook.com/ronperrinwatertech
Toll Free: 888-481-1768 Direct: 817-377-4988 Fax: 817-246-1740
Content source: Ron Perrin Clean Water Tank Project
Summer is Here!

Temperatures are rising! Summer is here and boy can we feel it! Some of us have ways to beat the heat but one thing we all have is WATER! It fills the pools, cools us down, and can quench our thirst!
It would be nice if all water was safe from bacteria and viruses. But the truth is that as the water demand increases, the more tanks and tower will be refilled from it sources. Just a little sediment can become a big problem. If left in a tank or tower sediment can be a breeding ground for many microbes, bacteria, and viruses. So with summer here the temperatures can play a big role on whether or not you water is safe from these breeding bacteria.
Just an increase of TEN degrees can double the speed of the bacteria growth! So as we begin to see new record high temperatures it is even more important that we try to keep tanks and towers clean of sediment.
Removing sediment from potable water tanks and towers can also help utilities use less chlorine. Since cleaning tanks and towers of sediment, our customers have found that their chlorine costs are reduced because the chlorine is no longer losing the war with the bacteria and microbes that were growing in the sediment.
The fact is removing the sediment from your water tank may prevent a disaster before it can ever start. Do not have the mind set of “out of sight and out of mind.” If an accumulation of sediment is found, don’t think of it as “just a little dirt.” Know that it is a place that can allow contaminants to compromise the entire water supply and the health of the community.
Divers are the best way to keep your tanks clean
Potable Water Divers can make quick work out of cleaning your water storage GST or EST. Our dive crew wears a dry suit so that no part of their body touches your water supply, They are then washed down with a chlorine solution to meet USEPA standards.
Sediment is quickly removed by the diver. This is very important due to the fact that sediment may contain bacteria, protozoa, viruses or other contaminants. Removing the sediment that has built up on the floor of the water storage tank should be a scheduled maintenance procedure done at least every three to five years.
For a free quote on cleaning your storage tanks call 817-377-4899. Or click – HERE – for an online form.
Inspecting and cleaning your water storage tanks and towers is critical to keeping your drinking water safe.
On June 17th 2002 the USEPA Office of Ground Water and Drinking Water published a white paper titled: “Health Risks from Microbial Growth and Biofilms in Drinking Water Distribution Systems”. In section 4 the paper list the types of microbes that may contaminate drinking water tanks. I have selected this section along with several others for your review. I also included excerpts from another white paper published on August 15, 2002 “Finished Water Storage Facilities” also reviews contaminants that may be in tank sediment and the importance of tank inspection and cleaning.
——————- Selections
Health Risks from Microbial Growth and Biofilms in Drinking Water Distribution System
IV. Microbes that May Present a Public Health Risk in the Distribution System
This section of the paper will discuss the potential public health concern that arises when certain microbes and their products become a component of the distribution system biofilm. While some potential health effects are listed in the tables herein, additional health effects are provided in tables on the EPA Office of Ground Water and Drinking Water website. The organisms and toxins discussed are:
Bacteria, Viruses, Protozoa, Invertebrates, Microbial toxins, Algae and algal toxins
A number of technical reviews of the literature have been published on biofilm organisms in the water distribution system and factors that influence their survival and growth (Geldreich and LeChevallier, 1999; Geldreich, 1996; van der Wende and Characklis, 1990; LeChevallier, 1989a; LeChevallier et al., 1990a; 1990b; 1999b; Costerton and Lappin-Scott, 1989; Marshall, 1992; Mittelman, 1991; USEPA, 1992b; NRC, 1982).
Any microbe (including some pathogens) present in water may attach, or become enmeshed, in the biofilm. Primary pathogens, which cause disease in healthy humans, may survive for a time in the biofilm. However, the survival time for many pathogens in biofilms is uncertain and likely varies depending on the organism For some pathogens, the distribution system is a physical, chemical, and biological environment unsuited for their growth. However, pathogens may accumulate in the biofilm, and the biofilm may extend the survival of primary pathogens by protecting them from disinfectants. These pathogens may be sloughed from the biofilm into the water column due to changes in the flow rate. The persistence of waterborne disease, or of microbial contamination in a distribution system, long after the cause of the distribution system problem has apparently been corrected suggests that there may be an isolated pocket of static or slow-flowing water or biofilm erosion or sloughing is occurring (i.e. the slow-release mechanism).
Page 19 – 20
D. Entry through contamination of finished water storage vessels
Both covered and uncovered finished water reservoirs provide opportunities for microbial contamination of the distribution system, and the subsequent inclusion in distribution system biofilms. Contaminated stored water can enter water distribution pipes when the water is drawn from the
vessels for distribution. Contamination introduced through earlier points in the distribution system may be amplified during storage (e.g., biofilm growth). Storage vessels may accumulate sediment, enhancing the ability of microbes to thrive during storage.
Microbial contaminants can enter open storage reservoirs by natural phenomena, animals or humans. Birds and other animals can introduce microbial contaminants through their feces, or through general contact with the finished water. Some open finished water reservoirs may also be subject to surface runoff which may be contaminated. The Interim Enhanced Surface Water Treatment Rule (IESWTR) requires that all newly constructed finished water reservoirs, holding tanks and other facilities constructed for surface water systems or ground water systems under the direct influence of surface water serving 10,000 or more people, be covered (Federal Register, December 16, 1998). The Long Term 1 Enhanced Surface Water Treatment Rule (LT1) extended this requirement to surface water systems or ground water systems under the direct influence of surface water serving fewer than 10,000 people (Federal Register, April 10, 2000).
Inadequately secured covered finished water storage vessels may allow microbial contamination to enter the distribution system. When air is drawn through air vents to replace water leaving the vessel, contamination in the air can enter (USEPA, 1992b). Humans and animals can enter inadequately protected covered finished water vessels and introduce contamination. Underground basins are susceptible to bird, animal and human contamination (USEPA, 1992b), while ground level and elevated finished water storage tanks can also become contaminated by humans and birds. A S. typhimurium outbreak in Gideon, Missouri, which caused over 400 cases of illness and seven deaths, was likely caused by bird feces contaminating an elevated storage tank (Clark et al., 1996). More information on contamination of storage vessels is addressed in a separate paper on covered storage.
E. Entry through Improper Treatment of Materials, Equipment or Personnel in Contact with Finished Water
Materials, equipment and personnel introduced to the distribution system also provide pathways for microbial contaminants to enter biofilms. The materials can include filter materials, piping, sealing vials and others (Schaule and Fleming, 1997). Personnel in contact with the water can provide a pathway for contaminant introduction (Schaule and Fleming, 1997) by introducing contaminants during maintenance or repairs of the distribution system or storage vessels. Equipment placed inside water distribution systems, such as tank cleaning equipment or video equipment used to inspect pipelines, can introduce contaminants if not decontaminated prior to use.
F. Entry through inadequate distribution system security
Lack of proper security may result in microbe entry, followed by incorporation of the microbial contaminants into the distribution system biofilm. This may result from intentional security breaches, such as vandalism or terrorism. Also, unintentional contamination can result from unauthorized users tapping into the distribution system and swimmers using storage vessels or reservoirs. Distribution systems can have many
miles of pipe, and many storage tanks and interconnections. Because of this, systems can be susceptible to tampering, allowing contamination
Page 26.
G. Sediment Accumulation
Significant microbial activity may occur in accumulated sediment (USEPA, 1992b). Organic and inorganic sediments can also accumulate in low-flow areas of the distribution system, and enhance microbial activity by providing protection and nutrients (USEPA, 1992b). Biofilms that slough can accumulate in the periphery of distribution systems leading to sediment accumulation and the proliferation of some microorganisms (van der Kooij, 2000). Sediments may be an important source of nutrients in open finished water reservoirs, by accumulating slowly biodegrading materials which are then broken down and released into the water column (LeChevallier, 1999b). The opportunities for biofilm development may be more abundant in storage tanks than in distribution system piping. Frequently, water is drawn from storage tanks only when water demand is high, such as during drought, fire flow, and flushing operations. This intermittent use results in prolonged storage times that may lead to increased sediment accumulation and lack of a disinfectant residual in the finished water storage vessel. Biological and aesthetic effects can be observed following the release of accumulated sediments from low flow areas of the distribution system (Geldreich, 1990).
Many studies have identified microbes in accumulated sediments, including both pathogens and non-pathogens. These include bacteria, viruses, protozoa, algae, fungi and invertebrates. Opportunistic pathogens that have been detected, and can multiply in sediments, include Legionella and mycobacteria (van der Kooij, 2000). Some primary pathogens can also survive for some time in sediments. Hepatitis A virus survived more than four months in sediments at both 5/C and 25/C (Sobsey et al., 1986). Other opportunistic pathogens found in sediments include Pseudomonas fluorescens and Flavobacterium spp. (Berger et al., 1993). Sediments can also release nutrients into the water which stimulate biofilm growth downstream (LeChevallier, 1999b).
VIII. Suitable Measures for Controlling Biofilm Development
Page 34
I. Proper Storage Vessel Management and Alteration
Proper storage vessel management and alteration, when necessary, can prevent contamination of the distribution system. Following TCR violations in 1996 in Washington D.C., one measure that proved effective in bringing the system back into compliance was the cleaning, inspection and disinfection of storage tanks and reservoirs (Clark, et al., 1999). To reduce pathogen presence and biofilm development, systems should have a scheduled program to rehabilitate all water storage facilities (USEPA, 1997). Proper operation and maintenance of storage tanks and reservoirs is listed as a BAT in the TCR (USEPA, 1992b). Storage tanks and standpipes should be pressure flushed or steam cleaned, then disinfected before returned to service (USEPA, 1992b), preferably with a disinfectant solution. This may not only remove microbial contamination from the vessel’s inner surface, but also nutrients that may be present. Proper operation of storage vessels can also reduce excessive residence times, which can lead to microbial survival and growth, and biofilm formation. Properly designed inlets and outlets, and the overall system design can improve problems caused by dead ends (Trussell, 1999). Pathogen contamination due to air introduction can be reduced by installing air filters to guard against pollution entering covered water reservoirs (USEPA, 1992b). Covering finished water reservoirs can protect against contamination from airborne sources, surface runoff, accidental spills and animals, such as insects and birds (USEPA, 1992b). EPA’s Uncovered Finished Water Reservoirs Guidance Manual describes recommended contamination control measures related to birds and other animals, human activity, algal growth and insects and fish (USEPA, 1999b). An understanding of the storage hydraulics and operation is important in reducing contamination of the finished water.
Proper turnover of the water in finished water storage facilities eliminates what amounts to dead ends and can reduce the extent to which biofilms develop, minimize nutrient availability and prevent the accumulation of sediments. To accomplish this systems can exercise valves to reduce stagnation, and eliminate excess storage (Crozes and Cushing, 2000).
Systems can exercise additional control over biofilm accumulation and microbial growth in finished water storage vessels by preventing sediment accumulation. This can be accomplished through periodic flushing (Crozes and Cushing, 2000) and cleaning.
__________________________________________________________
EPA White Paper #2
Office of Water (4601M)
Office of Ground Water and Drinking Water
Distribution System Issue Paper
Finished Water Storage Facilities August 15, 2002
Additional Information
The paper is available at the TCR web site at:
http://www.epa.gov/safewater/disinfection/tcr/regulation_revisions.html
Page 2
2.1.1 Sediment
Sediment accumulation occurs within storage facilities due to quiescent conditions which
promote particle settling. Potential water quality problems associated with sediment
accumulation include increased disinfectant demand, microbial growth, disinfection by-product
formation, and increased turbidity within the bulk water. Instances of microbial contamination
and disinfection by-product formation due to storage facility sediments are described in the
Pathogen Contamination and Microbial Growth section and the Disinfection By-Product
formation section, respectively.
2.1.2 Pathogen Contamination and Microbial Growth
Prepared by AWWA with assistance from Economic and Engineering Services, Inc. 3
Microbial contamination from birds or insects is a major water quality problem in storage tanks. One tank inspection firm that inspects 60 to 75 tanks each year in Missouri and southern Illinois reports that 20 to 25 percent of tanks inspected have serious sanitary defects, and eighty to ninety percent of these tanks have various minor flaws that could lead to sanitary problems (Zelch 2002). Most of these sanitary defects stem from design problems with roof hatch systems and vents that do not provide a watertight seal. Older cathodic protection systems of the hanging type also did not provide a tight seal. When standing inside the tank, daylight can be seen around these fixtures. The gaps allow spiders, bird droppings and other contaminants to enter the tank. Zelch (2002) reports a trend of positive total coliform bacteria occurrences in the fall due to water turnover in tanks. Colder water enters a tank containing warm water, causing the water in the tank to turn over. The warm water that has aged in the tank all summer is discharged to the system and is often suspected as the cause of total coliform occurrences. Storage facilities have been implicated in several waterborne disease outbreaks in the United States and Europe. In December 1993, a Salmonella typhimurium outbreak in Gideon, Missouri resulted from bird contamination in a covered municipal water storage tank (Clark et al. 1996). Pigeon dropping on the tank roof were carried into the tank by wind and rain through a gap in the roof hatch frame (Zelch 2002). Poor distribution system flushing practices led to the complete draining of the tank’s contaminated water into the distribution system. As of January 8, 1994, 31cases of laboratory confirmed salmonellosis had been identified. Seven nursing home residents exhibiting diarrheal illness died, four of whom were confirmed by culture. It was estimated that almost 600 people or 44% of the city’s residents were affected by diarrhea in this time period. A 1993 outbreak of Campylobacter jejuni was traced to untreated well water that was likely contaminated in a storage facility that had been cleaned the previous month (Kramer et al. 1996). Fecal coliform bacteria were also detected in the stored water. In 2000, a City in Massachusetts detected total coliform bacteria in several samples at one of their six finished water storage facilities (Correia, 2002). The tank inspector discovered an open access hatch and other signs of vandalism. This tank was drained and cleaned to remove several inches of accumulated sediment. Three other finished water storage facilities were cleaned in 2001 without being drained and removed from service. The tank closest to the filtration plant was found to contain two to three inches of accumulated sediment and the tanks in outlying areas contained four to six inches of sediment. Shortly after the tanks were returned to service, the City experienced widespread total coliform occurrences in the distribution system (Correia, 2002). The City’s immediate response was to boost the free chlorine residual in the distribution system to 4.0 mg/L (including at tank outlets). Also, the distribution system was flushed continuously for two days to remove the contaminated water. These measures resolved the coliform bacteria problem. A boil water order was not required. To prevent the problem from recurring, the City has instituted a tank cleaning program in which all tanks are cleaned on a three year cycle. City engineers are planning to improve water turnover rates by separating the tank inlet and outlet piping.
In 1995, a water district in Maine traced a total coliform bacteria occurrence in the distribution system to two old steel tanks with wooden roofs (Hunt 2002). Upon inspection, many roof shingles were missing and large gaps were present in the tank roofs. After the tanks were Prepared by AWWA with assistance from Economic and Engineering Services, Inc. 4 drained, an interior inspection found two feet of accumulated sediment, widespread coating failure on the tank sidewalls, and evidence of human entry. The tanks were cleaned and the distribution system was flushed and disinfected. A boil water order was in place until system water quality was restored. The tanks have since been replaced with a modern preload concrete tank.
3.3 Tank Inspections Page 10
Like water quality monitoring, tank inspections provide information used to identify and evaluate current and potential water quality problems. Both interior and exterior inspections are employed to assure the tank’s physical integrity, security, and high water quality. Inspection type and frequency are driven by many factors specific to each storage facility, including its type (i.e. standpipe, ground tank, etc), vandalism potential, age, condition, cleaning program or maintenance history, water quality history, funding, staffing, and other utility criteria. AWWA Manual M42, Steel Water Storage Tanks (1998) provides information regarding inspection during tank construction and periodic operator inspection of existing steel tanks. Specific guidance on the inspection of concrete tanks was not found in the literature. However, the former AWWA Standard D101 document may be used as a guide to inspect all appurtenances on concrete tanks. Concrete condition assessments should be performed with guidance from the tank manufacturer. Soft, low alkalinity, low pH waters may dissolve the cementitious materials in a concrete reservoir causing a rough surface and exposing the sand and gravel. The concern is that in extreme cases, the integrity of reinforcing bars may be compromised. Sand may collect on the bottom of the storage facility during this process. Routine inspections typically monitor the exterior of the storage facility and grounds for evidence of intrusion, vandalism, coating failures, security, and operational readiness. Based on a literature review and project survey, Kirmeyer et al. (1999) suggested that routine inspections Prepared by AWWA with assistance from Economic and Engineering Services, Inc. 11 be conducted on a daily to weekly basis. Where SCADA systems include electronic surveillance systems, alarm conditions may substitute for physical inspection.
Periodic inspections are designed to review areas of the storage facility not normally accessible from the ground and hence not evaluated by the routine inspections. These inspections usually require climbing the tank. Periodic inspections, like routine inspections, are principally a visual inspection of tank integrity and operational readiness. Based on a literature review and project survey, Kirmeyer et al. (1999) suggested that periodic inspections be conducted every 1 to 4 months.
Comprehensive inspections are performed to evaluate the current condition of storage facility components. These inspections often require the facility to be removed from service and drained unless robotic devices or divers are used. The need for comprehensive inspections is generally recognized by the water industry. AWWA Manual M42 (1998) recommends that tanks be drained and inspected at least once every 3 years or as required by state regulatory agencies. Most states do not recommend inspection frequencies thereby leaving it to the discretion of the utility. States that do have recommendations are Alabama (5 years), Arkansas (2 years), Missouri (5 years), New Hampshire (5 years), Ohio (5 years), Rhode Island (external once per year; internal, every five years), Texas (annually), and Wisconsin (5 years). Kirmeyer et al.(1999) recommend that comprehensive inspections be conducted every 3 to 5 years for structural condition and possibly more often for water quality purposes.
Uncovered finished water reservoirs have unique problems. Consequently, water utilities have ceased constructing such facilities. As noted previously, the IESWTR prohibits construction of new uncovered finished water reservoirs in the U.S. Under the LT2ESWTR, existing uncovered finished water reservoirs will be managed in accordance with a state approved plan, if the facility is not covered subsequent to the rule’s implementation. Flexible membrane covers are one means of enclosing uncovered reservoirs and these types of facilities also require specific routine, periodic, and comprehensive inspections to ensure the cover’s integrity.
3.4 Maintenance Activities Page 11
Storage facility maintenance activities include cleaning, painting, and repair to structures to maintain serviceability. Based on a utility survey conducted by Kirmeyer et al. (1999), it appears that most utilities that have regular tank cleaning programs employ a cleaning interval of 2 to 5 years. This survey also showed that most tanks are painted (exterior coating) on an interval of 10 to 15 years.
4.0 Summary
Microbiological, chemical, and physical water quality problems can occur in finished water reservoirs that are under-utilized or poorly mixed. Poor mixing can be a result of design and/or operational practices. Several guidance manuals have been developed to address design, operations, and maintenance of finished water reservoirs. Water quality issues that have the potential for impacting public health include DBP formation, nitrification, pathogen contamination, and increases in VOC/SOC concentrations. Elevated DBP levels within storage facilities could result in an MCL violation under the proposed Stage 2 Disinfectants and Disinfection Byproduct Rule, based on a locational running annual average approach. A separate White Paper on Nitrification indicates that nitrite and/or nitrate levels are unlikely to approach MCL concentrations within the distribution system due to nitrification unless finished water nitrate/nitrite levels are near their respective MCLs. Pathogen contamination from floating covers or unprotected hatches is possible. Recommended tank cleaning and inspection procedures have been developed by AWWA and AWWARF to address these issues.
Inspecting and cleaning your water storage tanks and towers is critical to keeping your drinking water safe. For a free inspection or cleaning quote call 817-377-4899.
Can a virus live in your drinking water?
YES. Both bacteria and viruses are microorganisms regulated by EPA’s Maximum Contaminant Levels (MCLs) criteria. Viruses are the smallest form of microorganisms capable of causing disease, particularly those of a fecal origin infectious to humans by waterborne transmission; bacteria are typically single-celled microorganisms that can also cause health problems in humans, animals or plants, despite many form’s ability to aid in water pollution control.
If your water storage tank has an accumulation of sediment on the interior floor you may have undetected microorganisms in your water storage tank. Sediment can be a safe habitat for a wide range of contaminants this can lead to the disinfectant being overwhelmed and the public served by your system being at risk of disease.
Clean Water Storage Tans and Towers
Keeping your water storage tanks clean and free of sediment is the best way to protect your customers from bacteria, viruses and many other microorganisms that can use the sediment on the floor of your tank to hide, grow and thrive. Our divers dress in dry suits completely sealed in their own environment, the diver is then washed down with a chlorine solution to meet EPA requirements. Our dive crew can quickly safely remove all sediment form your water storage tank or tower with a minimal of water loss! Do not take the risk of bacteria, viruses or other microorganisms growing in your water system. Keep your tanks clean and your water safe to drink.
For a free Quote on your tank cleaning call toll free 1-888-481-1768.
DIY Potable Water Tank and Tower inspection. Updated June, 20, 2020
GST – Ground Storage Tank Inspection
EST – Elevated Storage Tank Inspection
In Texas, potable water tanks are required to be inspected inside and out each year. Of course, that is our business and we are sure we have the best inspection method and offer the most information for the lowest cost. Sometimes circumstances may arise that prevent funds from being available.
In that case, follow these steps to safely inspect your own water storage tank to meet state standards.
There are safety concerns before you get started. The first step is to be sure the person assigned to climb any type of water storage facility is fit. Obviously climbing a water tower is physically challenging, but even smaller ground type storage tanks can require an exhausting amount of physical effort to climb.
Make sure everyone who is working on elevated surfaces (any water tank or tower) has completed a basic OSHA approved course on working at height. Employees who conduct work on elevated surfaces are exposed to fall hazards and are required to receive fall-protection training. If you are going to make entry into the tank you will also need to acquire confined space training. Employees who work in confined spaces face increased risk of serious physical injury. Hazards involving a confined space include entrapment, engulfment, and dangerous atmospheric conditions. As a result, employees who conduct work within confined spaces must be properly trained.
Next, you need the right equipment. Starting with a full body safety harness with Fall Protection Shock Absorbing Lanyards. If you are going to enter the tank for an inspection, a multi-gas monitor to perform atmospheric testing prior to entering a confined space is required under OSHA’s 1910.134. You will also need at least a three man entry team that includes a supervisor, entrant and attendee.

Len Pardee Environmental Compliance Officer and Inspection Supervisor (c) 2017 RPWT.

Inspection Technician on tower, using an underwater inspection camera and lighting system for a no-entry inspection.
Check the vent screen as it is the most common problem we see day after day. The chlorine & other treatment chemicals used in potable water are very hard on steel mesh screens, so do not use stainless steel – it may seem like an upgrade, but it won’t last any time at all.

Vent Structure on EST
Next, check the level of the sediment on the bottom of the tank floor. If you don’t have an underwater camera handy, you should drain the tank at least down to the level you can see the sediment on the floor. Make a note of the sediment depth & what it looks like, and make sure there are no insects, birds or other contaminants in the tank. DO NOT ENTER the tank! If you need to make entry into the tank you should follow all Confined Space Entry protocols including having at least a three- man trained team. This is really important! Chlorine gas can form above the water line in potable water storage tanks that have been treated with chlorine. In addition to that, corrosion on the steel can deplete oxygen levels in the tank making a deadly combination. Our crews go in on their own air to dive the facility or use a remote camera to view the interior. We NEVER ENTER THE TANK alone or unprotected!
If you choose to use an underwater camera to get a look inside, make sure it is purchased for, and only used in, potable water. Cross contamination is a serious issue that you need to be aware of! Visit our other blog at www.ronperrin.us for more information on water storage tank contamination.
If you are inspecting a tank or tower with a ladder, be sure to have the fall protection equipment you need to get the job done safely.

Inspector on tower www.ronperrin.com
The proper safety equipment & training is the key to performing a water tower inspection safely.
Get a copy of the Texas State Rules for water tank inspection directly from the TCEQ here:
TCEQ 290.46 go to : Chapter 30, TAC §290.46(m)(1)(A)
The State Form is also available HERE:
Texas Commission on Environmental Quality Tank Inspection Log
Some other states follow AWWA recommendations. Here are the main components that are required to be inspected annually in Texas, and should be included in any potable water tank inspection.
Foundation: settling, cracks, deterioration
Condition of Exterior Coating: rust, pitting, corrosion, leaks
Water Level Indicator: operable, cable access opening protected
Overflow Pipe: flap valve cover accessible, operable, sealed
Access Ladder: loose bolts or rungs
Roof: low spots for ponding water, holes along seams, rust
Air Vents: proper design, screened, sealed edges and seams
Cathodic Protection Anode Plates: secured and sealed
Roof Hatch: proper design, locked, hinge bolts secured, gasket
Interior inspections should include:
Condition of Interior Coating : Check for rust, corrosion, blistering & scaling.
Water Quality Check for:
Insects in the tank both on the surface of the water and on the interior floor.
Floating debris
Sediment levels on the interior floor – (Sediment can be a habitat for bacteria & other contaminants).
Is your tank a Hydro–Pressure Type Tank?
Check Operational Status: pressure release device, pressure gauge, air-water volume device
In Texas Pressure Type Tanks that are large enough to have an inspection port are required to be inspected annually.
They are also required to be opened up and have the interiors inspected at least once every five years.
All inspection reports performed in Texas should be kept on file and available for TCEQ review for five years.
Do you need a Texas Inspection form? Click here: TCEQ TANK INSPECTION FORM.
Do you know how to inspect a water tower and stay safe? Click this link to find out!
This should help you gat started on your potable water tank inspections.
If you need an inspection contractor call 817-377-4899 or see: www.ronperrin.us
Since 1997 we have performed thousands of inspections for water utilities in 14 states.
We have the proper training, inspection and safety equipment to safely deliver you the most information for the least cost.
My book is a great reference point for state rules and requirements.
For safety training check out the OSHA Regional facility near you.https://www.osha.gov/otiec/
For online safety training check out https://www.oshatrain.org/
—————-